
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2172

A New approach of program slicing:

Mixed S-D (static & dynamic) slicing

Mrs. Sonam Jain
1
, Mr. Sandeep Poonia

2

M.Tech (CSE) Scholar, Jagannath University, Jaipur
1

Associate Professor, Department of Computer Science & Engineering, JNIT University, Jaipur
2

Abstract: Program slicing technique is used for decomposition of a program by analyzing that particular program data

and control flow. The main application of program slicing includes various software engineering activities such as

program debugging, understanding, program maintenance, and testing and complexity measurement. When a slicing

technique gathers information about the data and control flow of the program taking an actual and specific execution

(or set of executions) of it, then it is said to be dynamic slicing, otherwise it is said to be static slicing. Generally,

dynamic slices are smaller than static because the statements of the program that affect by the slicing criterion for a

particular execution are contained by dynamic slicing. This paper reports a new approach of program slicing that is a

mixed approach of static and dynamic slice (S-D slicing) using Object Oriented Concepts in C++ Language that will

reduce the complexity of the program and simplify the program for various software engineering applications like

program debubbing.

KEYWORDS: Program-Slicing, Static-Slicing, Dynamic-Slicing-D slicing, Data-Dependency, Control- Dependency.

1. INTRODUCTION

To obtaining subparts of a program with a collective

meaning a technique is used called Slicing. Program

slicing is one of the debugging methods used to locate the

errors in a program originally proposed by Weiser [7].

The idea of program slicing is to focus on the statements

that have something to do with a variable of interest

(criterion variable), referred as the slicing criterion with

those statements which are unrelated being omitted. Using

the slicing method, one obtains a new program of

generally smaller size which still maintains all aspects of

the original program behavior with respect to the criterion

variable.

Program slicing can be classified into two main

categories: Static slicing and dynamic slicing.

 A static slicing uses static analysis to derive

slices. i.e., the source code of the program is analyzed and

the slices are computed for all possible input values.

Dynamic Slicing makes use of the information about a

particular execution of a program. [11] .A dynamic slice

preserves the effect of the program for a fixed input. An

advantage of dynamic slicing over static slicing is a

smaller size program is derived from the dynamic slicing

approach, or in the worst case, it will be of equal size.

 When the slicing is performed from the starting

statement referred to in the criterion and going back to the

beginning, then it is said to be backward slicing, or in

backward slicing we are interested in all those statements

that can influence the slicing criterion. Otherwise it is said

to be forward slicing. In forward slicing we are interested

in all those statements that could be influenced by the

slicing criterion .The main application of forward slicing

is that we can determine how a modification in a part of

the program will affect other parts of a program.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2173

1.1 PURPOSE AND SCOPE OF THE STUDY

The main purpose of this work is to implement a mixed

slicing approach of static and dynamic slicing i.e. S-D

slicing approach in generating a program slice.

Specifically, in this study we develop a code that have an

Object Oriented approach by using both static and

dynamic slicing.

The rest of this paper is organized as follows. Section2

contains a general discussion of static and dynamic slicing

and Section 3,4 represents the steps involved in the

designing of a new approach is S-D slicing (mixed of

static and dynamic slicing) with object oriented concepts.

2. EXAMPLE OF STATIC AND DYNAMIC

SLICING

2.1 Process of static slicing

The data dependence and control dependence in static

slice is denoted using SDG (System Dependence Graph).

The SDG for the above lines of code is:

Fig. 2.1 System Dependence Graph

2.1.1 Process of Static slicing

Consider the procedural C++ example program given in

Figure 2.1.a. The static slice with respect to the slicing

criterion <11; add > is the set of statements {4, 5, 6, 8, 9}.

Consider a particular execution of the program with the

input value x = 15. The dynamic slice with respect to the

slicing criterion < 11, add > for the particular execution of

the program is {5}.

1: a:=4;

2: b:=3;

3: readln(c);

4: if c=0 then

5: d:=a ;

6: else

7: d:=a+1;

8: e:=b+a;

9: writeln(d);

10: writeln(e);

Fig. 1 Example of program Slicing

1 main()

2 {

3 int x, add;

4 cin>> x;

5 add = 0;

6 while(x <= 10)

7 {

8 add=add+x;

9 ++ x;

10 }

11 cout<<add ;

12 cout<< x;

13 }

Fig. 2.1.a An example program

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2174

2.2 Process of dynamic slicing

To understand the concept of dynamic slicing to have to

know about dependency i. e. when each statement of a

code is dependent on other statement in some way, this is

known as dependency. Generally, it is categorized into

two types:

(1)Data Dependency: In this dependency scheme a

statement or a variable is dependent on some other

statement for some data then it is known as data

dependency.

(2)Control Dependency: In this dependency scheme the

execution of a statement is dependent on some other

statement it is called as control dependency.

2.2.1 Data -Dependence: DD (s1, v1, t1):

 Variable v1 is defined in a statement s1.

 v1 is referred in a statement t1, and

 At least one execution path without re-definition

between s1 and t1 exists.

1: x:=3;

2: y:=x+x;

3: if y>0 then

DD 4 : z: =x;

 5: else

 6: p: =y;

 Fig. 2.2.a An example program on Data

Dependence

In the above figure 2.2.a the curve lines shows data

dependence.

 2.2.2 Control -Dependence: CD (s1, t1):

 s1 is a conditional predicate, and

 the result of s1 determines whether statement t1

is executed or not

 1: x: =3;

2: y:=x+x;

3: if y>0 then

4: z:=x

5: else

6: p:=y;

Fig. 2.2.b An example program shows Control

Dependence

In the above figure 2.2.b the curve lines shows control

dependence.

2.2.3 Process of Dynamic slicing

Let us consider an example:

1: x:=5;

2: y:=3;

3: readln(z);

4: if z=0 then

5: p:=x

6: else

7: p:=x+1;

8: q:=y+x;

9: writeln(p);

10: writeln(q);

Execution trace with input z=0 is as follows:

1 cin>> x;

2 add = 0;

3 while(x <= 10)

4 add=add+x;

5 ++ x;

Static slicing: criterion <11; add >

Fig 2.1.b An example

Program on Static Slicing

Figure1: An example program

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2175

Fig. 2.2.c An example program Dynamic Slicing

3. MIXED APPROACH OF STATIC AND

DYNAMIC SLICING (S-D SLICING) APPROACH

When we study both approach about static and dynamic

slice some advantage and disadvantage of both

approaches are seen that the advantage of static slicing it

is easier and faster to identify a static slice. This is

because computations for generating a static slice are

done directly from the original source program. Static

slicing does have the disadvantages. First, a larger size

program slice is generated by static slicing than that of

dynamic slicing. Second, the array elements and fields in

dynamic records as individual variables cannot treat by

static slicing.

 Unlike static slicing, dynamic slicing is defined

on the basis of one computation rather than all

computations and a dynamic program slice is computed

only by the executable part of the original source

program. So, a smaller size program is generated by the

approach of dynamic slicing. In addition, it also enables

one to treat array elements and fields in dynamic records

as individual variables. By applying dynamic slicing, one

finds it easier to identify the statements in the program

that do not influence the variables of interest.

Disadvantage of dynamic slicing is that it is slower and

more difficult to compute than static slicing. This is

because in this slicing approach we have to determined

the executable part of the original source program before

computations of slices.

 So by designing a new approach mixed approach

of static and dynamic slicing with object oriented concept

we can overcome some disadvantage of dynamic slicing

like we can speedup the execution of program slice and

reduce he complexity of program slice.

4. AN EXAMPLE OF MIXED S-D SLICING

APPORACH

int Parts=1;

class Individual

{

public:

virtual void output()

{

Parts = Parts+10000;

cout << "Individual is the CEO";

}

};

class Worker: public Individual

{

public:

int pay;

Worker()

{

pay = 1000;

}

using Individual::output;

void output(int years)

{

for (int i=1;i < years; i++)

{

Parts++;

pay = pay + years;

pay= pay * 1.01;

}

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2176

}

};

class Executive: public Worker

 {

public:

int years;

using Worker::output;

void output(char position)

{

Parts = Parts+100;

cout <<"Executive"<<position;

}

};

void main()

 {

Worker our_Worker;

Individual our_Individual;

Executive our_Executive[100];

int i;

for (i=1; i<100; i++)

{

our_Executive[i].years=50;

if (i < 80)

our_Executive[i].output(50);

else

if(i<99)

our_Executive[i].output('M');

else

our_Executive[i].output();

cout << our_Executive[i].years;

cout <<Parts<<endl;

}

}

Fig. 3.1 An example program S-D Slicing]

In the above Figure 3.1 we implemented a new approach

of dynamic program slicing is S-D Slicing approach with

Object oriented Concepts in C++ Language. In this

example we use the concept of Classes and Polymorphism

and also inheritance in terms of Object oriented

Programming in C++ languages.

CONCLUSION

We have designed a new approach of program slicing i.e.

mixed static and dynamic slicing (S-D slicing). The main

feature of this approach is that we can generate dynamic

slices in a faster way by using Object Oriented Concepts

like classes and inheritance etc.. As we know that by

using Object Oriented concepts in C++ language we can

reduce the size or length of a program. Here we presented

the approach in terms of C++; other versions of this

approach for object oriented programming languages such

as Java can be easily adaptable. In this paper we develop a

mixed slicing approach based on the mixture of both

static and dynamic slicing which generates dynamic

slices. This approach is intended for reduce the

complexity and debugging environment for Object

Oriented C++ programs in which the static and dynamic

slicing technique is being used.

REFERENCES

[1] S. Horwitz. Reps, “Interprocedural slicing using dependence

graphs”, Programming Languages and Systems, 1990.

[2] L. D. Larson and M. J. Harrold. “Slicing Object Oriented software”,
German, March 1996.

[3] M.Shara Lydia, Jaydev Gyani, “Dynamic Attribute Slicing

Technique for Object-oriented programs”, In Proceedings of the
National Conference on Informatics , NCI-2008, Nellore,AP.

[4] Y. Song and D. Huynh. “Forward Dynamic Object-Oriented

Program Slicing”, Application Specific Systems and Software
Engineering and Technology (ASSET'99). IEEE CS Press, 1999.

[5] I.Srinath, Jaydev Gyani, “Static Attribute Slicing Technique for

Object-oriented programs”, In Proceedings of the National Conference
on Informatics , NCI-2008, Nellore, AP.

[6] M. Weiser. “Programmers use slices when debugging”,

Communications of the ACM, 25(7):446 – 452, 1982.
[7] M. Weiser. “Program slicing”. IEEE Transactions on SE 10(4), 1984.

 [8] X. Zhang and Y. Zhang. “Forward computation of dynamic slices”,

International Conference on SE, 2004.
[9] J. Zhao. “Dynamic slicing of object-oriented programs”, Technical

report, Information Processing Society of Japan, May 1998
[10] 10.G. B. Mund, R. Mall, S. Sarkar "Computation of intraprocedural

dynamic program slices”, Department of CSE, IIT Kharagpur,

Information and Software Technology (45).
[11] B. Korel, J. Laski, "Dynamic program slicing," Information

Processing Letters, vol. 29, 1988.

[12] Weiser, Mark, “Program Slicing,” Proceedings of the Fifth
International Conference on Software Engineering, March 1981, [13]

Weiser, Mark, “Programmers Use Slices When Debugging,”

Communications of the ACM, Vol. 25, No. 7, July 1982.
[14] Weiser, Mark, “Program Slicing,” IEEE Transactions on Software

Engineering, July 1984.

